گروه آموزش ابتدایی

آموزش ابتدایی در پایه دوم وسوم

فرمول های ریاضی

 

یک ضلع × خودش = مساحت مربع

یک ضلع × 4 = محیط مربع

طول × عرض = مساحت مستطیل

2× (طول + عرض) = محیط مستطیل

2 ÷ (قاعده × ارتفاع) = مساحت مثلث

مجموع سه ضلع = محیط مثلث

نصف ارتفاع × (قاعده بزرگ + قاعده کوچک) = مساحت ذوزنقه

مجموع 4 ضلع = محیط ذوزنقه

2÷ (قطر بزرگ × قطر کوچک) = مساحت لوزی

یک ضلع × 4 = محیط لوزی

ارتفاع × قاعده = مساحت متوازی الاضلاع

مجموع دو ضلع متوالی × 2 = محیط متوازی الاضلاع

عدد پی × مجذور شعاع = مساحت دایره

14/3 × شعاع × شعاع

14/3 × قطر = محیط دایره

  مساحت کره

چهار ×عدد پی × مجذور شعاع = مساحت کره

حجم کره

  عدد پی × شعاع به توان 3 = حجم کره

14/3 × (نصف قطر کوچک × نصف قطر بزرگ) = مساحت بیضی

یک ضلع × تعداد اضلاع = محیط چند ضلعی منتظم

طول یال × مساحت یک وجه = حجم مکعب

ارتفاع × عرض × طول = حجم مکعب مستطیل

ارتفاع × قاعده = حجم مکعب

ارتفاع هرم × مساحت قاعده هرم = حجم هرم

ارتفاع × مساحت قاعده = حجم استوانه

ارتفاع × محیط قاعده = مساحت جانبی

سطح دو قاعده + مساحت جانبی = سطح کل استوانه

مجموع مساحت سطوح جانبی  = مساحت جانبی منشور

مجموع مساحت دو قاعده + مجموع مساحت سطوح جانبی = مساحت کلی منشور

ارتفاع  × مساحت قاعده = حجم مخروط

تعاریف هندسی                

شعاع : خطی از مرکز دایره به پیرامون دایره را شعاع می گویند.

(شعاع خطی مستقیم است که مرکز دایره را به نقطه ای از محیط دایره وصل می کند)

شعاع نصف قطر است.

قطر : فاصله مستقیم دو طرف دایره را که از وسط دایره بگذرد را قطر می نامند.

عدد پی : 14/3 = π یکی از معروف ترین ثابت های ریاضی عدد π می باشد.

عدد پی نسبت محیط دایره به قطرش است و تقریبا برابر 14/3 می باشد.

و دقیقتر آن 14159/3

و دقیقتر آن تا 22 رقم اعشاری برابر است با :

                                                                        1415926535897932384626/3 = π

عدد پی (π) عددی گنگ است که رقم هایش تا بی نهایت ادامه دارد.

*برای بدست آوردن مساحت و محیط دایره، کره و بیضی از عدد ثابت پی استفاده می شود.

زاویه حاده (زاویه تند) : زاویه کوچکتر از 900  را حاده یا تند گویند.

زاویه قائمه : برابر 900 می باشد.

زاویه منفرجه (زاویه باز) : زاویه بیشتر از 900 را زاویه باز یا منفرجه نامند.

زاویه نیم صفحه : زاویه 1800 را زاویه نیم صفحه گویند. همانند نیم دایره

درجه = واحد اندازه گیری زاویه، درجه است.

حداکثر زاویه (تمام صفحه) 360 درجه است. همانند دایره

نیم ساز : نیم خطی که زاویه را به دو قسمت مساوی تقسیم می کند را نیمساز زاویه گویند.

دو خط عمود بر هم : دو خط که زاویه بین آنها راست یا 900 باشد دو خط عمود بر هم هستند.

عمود منصف : عمود منصف خطی است که هم عمود بر پاره خط بوده و هم آن را نصف کرده باشد.

انواع خط :

خط راست :

خط شکسته :

 


خط خمیده :

 

 

خط باز :

 


خط بسته :

 

 

پاره خط :

 


نقطه تقاطع

خطوط متقاطع :

 

خط تقارن = اگر شکلی را از وسط تا کنیم طوری که تمامی زوایای آن شکل بر هم منطبق شوند، محل تا شدگی را خط تقارن نامند.

بخش پذیری اعداد

حاصل تقسیم صفر بر هر عددی برابر صفر است.

حاصل تقسیم هر عددی بر صفر تعریف نشده است. یا می توان گفت بی نهایت است.

اعدادی بر 2 قابل تقسیم هستند که یکان آنها زوج باشد.

اعدادی بر 3 قابل تقسیم هستند که مجموعشان بر 3 قابل تقسیم باشد.

اعدادی بر 4 قابل تقسیم هستند که دو رقم آخر آنها بر 4 قابل تقسیم باشد.

هر عددی که مضربی از 100 باشد نیز بر 4 قابل تقسیم است. (چون 100 خودش بر 4 قابل تقسیم است.)

اعدادی بر 5 قابل تقسیم هستند که رقم یکان آنها 0 یا 5 باشد.

اعدادی بر 6 قابل تقسیم هستند که بر 2 و 3 قابل تقسیم باشند.

عددی بر 8 قابل تقسیم است که یا مضربی از 1000 باشد و یا 3 رقم آخر آن بر 8 قابل تقسیم باشد.

اعدادی بر 9 قابل تقسیم هستند که مجموعشان بر 9 قابل تقسیم باشد.

عددی بر 10 قابل تقسیم است که رقم آخر آن صفر باشد.

عددی بر 11 قابل تقسیم است که اگر ارقام آن عدد را به ترتیب از چپ به راست یکی در میان منها و جمع کنیم، حاصل صفر یا مضربی از 11 باشد.

اعدادی بر 12 قابل تقسیم هستند که بر 3 و 4 قابل تقسیم باشند.

اعدادی بر 14 قابل تقسیم هستند که بر 7 و 2 قابل تقسیم باشند.

اعدادی بر 15 قابل تقسیم هستند که بر 3 و 5 قابل تقسیم باشند.

هر تقسیم از چهار قسمت تشکیل شده است :

مقسوم، مقسوم علیه، خارج قسمت، باقیمانده.

باقیمانده + مقسوم علیه × خارج قسمت = مقسوم

 

اعداد

اعداد طبیعی :

اعداد صحیح بزرگتر از صفر را اعداد طبیعی گویند.

N = {1, 2, 3, 4, 5,…..}

اعداد صحیح :

مجموعه اعداد مثبت و منفی صحیح را اعداد صحیح نامند.

Z = {…,-3,-2,-1, 0, 1, 2, 3,…}

اعداد اعشاری :  5/71  و 14/3

اعداد اول

اعداد اول : هر عدد طبیعی بزرگتر از 1 که غیر از خودش و 1 مقسوم علیه دیگری نداشته باشد، عدد اول نامیده می شود.

P = {2,3,5,7,11,13,17,19,23,29,31,37,41,43,……}

اعداد مثبت : کلیه اعداد بزرگتر از صفر اعداد مثبت هستند.   5 و 1

اعداد منفی : کلیه اعداد کوچکتر از صفر اعداد منفی هستند.   -6 , -3

اعداد کسری :  ،  ،  ،

هر عدد به صورت  که در آن a , b اعداد صحیح می باشند و b ≠0 باشد یک کسر نامیده می شود.

اعداد گویا : هر عددی که بتوان به صورت کسر نوشت یک عدد گویا است.

اعداد گویا را با Q نمایش می دهند.

هر عدد صحیح یک عدد گویاست.

عدد گنگ : عددی که قابل تبدیل به نسبت دو عدد درست نباشد، عدد گنگ (اصم) است.

اعداد گنگ را با (Q`) نمایش می دهند.

مجموعه اعداد گویا و گنگ را اعداد حقیقی گویند و با (R) نمایش می دهند.

نصف :                                  ثلث :                                   ربع :                           خمس :

متر

متر = صد سانتیمتر یک متر است.

کیلومتر = 1000 متر یک کیلومتر است.

سانتی متر = 10 میلیمتر یک سانتی متر است.

میلیمتر = یک میلیمتر برابر 1000 میکرون است.

دسی متر = 10 سانتیمتر یک دسی متر است.

دکامتر = 10 متر

هکتو متر = 100 متر

ذرع = 104 سانتیمتر

متر مربع برابر است با مربعی که هر ضلع آن 1 متر باشد.

1 اینچ = 54/2 سانتیمتر

1 فوت = 5/30 سانتی متر

1 یارد = 44/91 سانتی متر

1 مایل = 609/1 کیلومتر

هکتار = 10.000 متر مربع

جریب = 4050 متر  مربع

1 کیلومتر مربع = 100 هکتار

لیتر

واحد اندازه گیری مایعات لیتر است.

لیتر = یک لیتر برابر است با گنجایش مکعبی تو خالی که هر بعد آن 10 سانتیمتر باشد.

یک لیتر آب تقریبا برابر یک کیلوگرم می باشد.

سانتی متر مکعب = حجم مکعبی که هر یک از ابعاد آن 1 سانتی متر باشد، یک سانتی متر مکعب است.

متر مکعب = یک متر مکعب گنجایش مکعبی تو خالی به ابعاد یک متر است.

1000 لیتر برابر یک متر مکعب است.

سی سی = یک سانتیمتر مکعب  برابر یک سی سی است .

یک لیتر = برابر 1000 سی سی است.

اوزان و مقیاس ها

گرم = هزار گرم برابر است با 1 کیلوگرم

کیلوگرم = 1000 گرم

تن = 1000 کیلوگرم

من = 3 کیلوگرم

خروار = 100 من

سیر = 75 گرم

چارک = 750 گرم

قیراط = 9/205 گرم

1 اونس = 35/28 گرم

1 پوند = 592/453 گرم

1 ری = 12 کیلو گرم

1 مثقال = 6875/4 گرم

1 نخود : 1953/0 گرم

1 گندم = 0488/0 گرم

واحدهای شمارش :

انسانها از گذشته تا کنون برای شمارش اشیاء از اصطلاحات زیر استفاده می کنند :

انسان (شتر و درخت خرما) = نفر

کشتی و هواپیما = فروند

پرندگان = عدد

خانه ، مغازه = باب

کتاب = جلد

کاغذ = برگ

دسته های کاغذ و مقوا = بند

پارچه و کالاهای تجاری = عدل

پارچه ندوخته = توپ

فشنگ = تیر

عکس = قطعه

اشیاء قابل شمارش(گردو، فندق و ...) = دانه

شیشه و آینه = جام

اسلحه سنگین (توپ و تانک و ....) = عراده

روزنامه و مجله = نسخه

شمع، لامپ (اشیاء نورانی) = شعله

گل و گیاه = دسته

درخت و الوار = اصله

دسته حیوانات = گله

حیوانات وحشی = قلاده

حیوانات اهلی = رأس

کفش = جفت

تلویزیون، رادیو و ... = دستگاه

فیلم، لاستیک(اشیاء مدور) = حلقه

دکمه، قرقره = جین

قالی، پتو = تخته

پارچه های شال و غیره = طاقه

فنجان = دست

اشیاء رشته مانند (کمربند و .........) = رشته

سرعت نور و صدا

سرعت نور در ثانیه = 300000 کیلومتر

مسافت طی شده نور در سال = سال نوری

برای محاسبه فاصله بین ستارگان و کهکشان ها از مقیاس سال نوری استفاده می شود و میزان آن برابر است با مسافتی که نور در طی یک سال طی می کند.

سرعت صوت (صدا) = 300 متر بر ثانیه

اندازه گیری سرعت حرکت وسایل نقلیه

کیلومتر بر ساعت kmh

مایل بر ساعت

تصویر

معادل فارسی

تعریف

واژه لاتین

 

 

انتقال

جابجا شدن شکل بر روی خط راست

translation

 

ابعاد

اندازه های یک جسم یا شکل در جهت های مختلف

dimension

 

بازتاب

بازتاب شما در آینه عین خود شماست، اما نه کاملا یعنی اگر یک خط تقارن روی یک شکل متقارن قرا دهید شکل سمت راست آن درست شبیه سمت راست آن دیده میشود

reflection

بیضی

بیضی شکلی هندسی دارای دو کانون است. در فا، سیاره ها روی یک مسیر بیضی شکل دور خورشید میگردند.

ellipse

پرگار

وسیله ای برای رسم کمانها و دوایر است. پرگار دو پایه دارد که به انتهای یکی از آنها یک سوزن نوک تیز و به انتهای دیگری یک مداد یا خودکار متصل است.

compass

 

پرسپکتیو

دو شکل متشابه را میتوان با استفاده از تبدیل های همنهشتی به مکان های نسبی خاصی انتقال داد که در آنها پاره خطهای متناظر موازی باشند.در این وضعیت گفته میشود که شکل های مورد بحث در پرسپکتیوند

perspective

 

تقارن

شکلهایی دارای تقارن هستند که بتوانیم دو یا چند قسمت آن را روی هم منطبق کنیم.

symmetry

 

حجم

حجم یک جسم مقدار فضایی است که اشغال میکند و شما برای بدست آوردن هر حجم منتظم میتوانید از فرمول خاص آن استفاده کنید

volume

 

دایره

شکل متقارنی سات که فاصله همه نقطه های روی محیط آن، از مرکز به یک اندازه است

circle

 

دوران

نوعی انتقال است که در آن یک شکل تحت یک زاویه خاص به موقعیت ثانویه انتقال پیدا می کند.

rotation

 

ذوزنقه

چهار ضلعی است که در آن دو ضلع با هم موازی و دو ضلع ناموازی اند

trapezoid

 

زاویه

مقدار چرخش یا گردش یک چیز است که معمولا با درجه اندازه گیری میشود.

angle

 

سهمی

مکان هندسی نقاطی از صفحه است که از نقطه و خطی مفروض به یک فاصله اند

parabola

کره

یکی از حجم های هندسی با سطح منحنی است. این حجم کاملا متقارن است، چون هر نقطه که روی سطح آن در نظر بگیریم، فاصله اش تا مرکز یک مقدار مشخص است.

sphere

 

کمان

یک منحنی است که اگر آن را کامل کنید، دایره بدست می آید

arc

 

مثلث

یک شکل سه ضلعی است که مجکوع زوایای داخلی آن 180 درجه است

triangle

 

محور

خطی فرضی است که از وسط اجسام میگذرد.خط های افقی و عمودی روی نمودار هم ، محور نامیده می شوند. از محور ها برای تعیین مختصات نقطه روی نمودار استفاده می شود.

axis

 

محیط

لبه ها یا مرز یک سطح است. پیرامون هر شکل بسته ، محیط آن نامیده میشود.

perimeter

 

محدب

سطح منحنی محدب انحنایی مانند سطح بیرونی توپ دارد.

convex

مخروط

حجمی که راس آن یک نقطه و قاعده آن یک دایره است

cone

 

مربع

یک چهار ضلعی است با چهار ضلع و چهار زاویه مساوی

square

 

مساحت رویه

جسم فضایی را میتوان در اصل به عنوان مجموع مساحات هر یک از رویه ها ی محصور کننده معین کرد

surface area

 

مستطیل

یک چهار ضلعی است که ضلع های آن دو به دو با هم مساوی هستند و همه زاویه های آن قائمه اند

rectangle

 

مقعر

سطح منحنی مانند سطح داخلی یک کاسه است

concave

 

مکان هندسی

مجموعه ای از نقاط تعریف شده توسط قاعده ای است که تشخیص این مطلب را ممکن میکند که هر نقطه مفروضی به آن مجموعه متعلق است یا خیر

locus

 

مکعب

حجمی است که از شش وجه مربع شکل درست شده است.

cube

نقاله

وسیله ای برای اندازه گیری و رسم زاویه.نقاله ها معمولا بر اساس درجه مدرج شده اند

protractor

 

وتر

پاره خطی است که دو سر یک کمان را به هم وصل میکند

chord

 

وتر(مثلث قائم الزاویه)

بزرگترین ضلع مثلث قائم الزاویه است.

hypotenuse

 

وجه

هر سطح صاف یک حجم هندسی، یک وجه است و با یالهای شکل احاطه شده است

face

 

هم محور

دو شکل یا جسم را که محور مشترک داشته باشند ، هم محور هستند

coaxial

هرم

یکی از حجم های هندسی است که وجه های آن مثلث هستند. وجه ها در نقطه ای مشترک به نام راس به هم می رسند.قاعده هرم میتواند مثلث یا مربع و یا چند ضلعی دیگری باشد

pyramid

 

هذلولی

مکان هندسی نقاطی از صفحه است که تفاضل فواصل آنها از دو نقطه ثابت مقدار ثابت 2a است.

hyperbola

 

هندسه مسطحه

قسمتی از هندسه که با شکلهای دو بعدی سر و کار دارد

plane geometry

 

هندسه فضایی

شاخه ای از هندسه اقلیدسی است.موضوع آن عبارت است از صورت،مکان نسبی،اندازه،و سایر ویژگیهای متری اشکال هندسی که بر یک صفحه قرار ندارند.

solid geometry

هندسه ترسیمی

نگاشت های فضای سه بعدی را بروی یک صفحه ترسیم مسطح بررسی کرده و به کار میبرد.

descriptive geometry

 

یال

پارهخطهای حاصل از برخورد دو وجه را گویند

edge

هندسه، یک بیضی یک خم مسطح (خمی که در یک صفحهٔ اقلیدوسی تشکیل شده‌است.) است که از برخورد یک صفحه با یک مخروط ایجاد می‌شود به شرطی که خم ایجاد شده بسته باشد. برابر انگلیسی واژهٔ بیضی، ellipse از واژهٔ یونانی ἔλλειψις elleipsis به معنی falling short گرفته شده‌است. دایره حالت خاص بیضی است؛ که هنگامی بدست می‌آید که صفحهٔ عمود بر محور مخروط با آن برخورد کرده باشد. تعریف دیگر بیضی عبارت است از: مکان هندسی نقاطی از صفحه‌است که مجموع فاصله‌های آن‌ها از دو نقطهٔ ثابت به یک اندازه ثابت مثبت باشد.

بیضی‌ها خم‌های بسته و محدود از مقطع مخروط اند، این خم‌ها از برخورد یک مخروط دایره‌ای با یک صفحه که از رأس مخروط نمی‌گذرد تشکیل شده‌اند. دو نوع خم دیگر نیز از برخورد صفحه با مخروط می‌توانند ایجاد شوند، این خم‌ها همگی باز اند و تشکیل سهمی و هذلولی می‌دهند.

در تعریفی دیگر بیضی مکان هندسی نقاطی است که نسبت فاصله آن از یک نقطه (کانون بیضی)، به فاصله آن از یک خط (خط هادی) برابر با عددی ثابت و کوچکتر از یک است.

یک بیضی و برخی ویژگی‌های ریاضی آن.

یک بیضی یک خم بسته‌است که نسبت به محورهای عمودی و افقی خود متقارن است. دو نقطه بر روی محیط بیضی که در دو سوی مخالف هم قرار دارند، یا به بیان دیگر، دو نقطه که خط واصل میان آن‌ها از مرکز بیضی عبور می‌کند هنگامی در دورترین فاصله نسبت به هم قرار دارند که بر روی قطر بزرگ بیضی یا محور تقارن بزرگتر بیضی قرار گرفته باشند؛ و هنگامی کمترین مقدار را دارد که آن دو نقطه بر روی محور عمود بر قطر بزرگ، یعنی محور تقارن کوچکتر یا قطر کوچک بیضی قرار گرفته باشند.[۱]

نیم‌قطر بزرگ (که در شکل با a نمایش داده شده‌است) و نیم‌قطر کوچک بیضی (که در شکل با b نمایش داده شده‌است) به ترتیب نیمی از قطر بزرگ و نیمی از قطر کوچک بیضی اند که گاهی به آن‌ها شعاع کوچک (major radius) و شعاع بزرگ (minor radius) نیز می‌گویند.

همچنین در انگلیسی به آن‌ها major semi-axes و minor semi-axes نیز گفته می‌شود.

محیط بیضی

محیط بیضی به کمک انتگرال‌های کامل بیضوی نوع دوم قابل محاسبه‌است. البته فرمول صریحی همانند مساحت بیضی که برابر A = πab می‌باشد برای محیط بیضی وجود ندارد. و محیط بیضی تنها بوسیلهٔ سری نامتناهی قابل محاسبه‌است:

یا

در روابط فوق ε خروج از مرکز بیضی است. در ضمن خروج از مرکزیت بیضی برابر با فاصلهٔ دو کانون تقسیم بر قطر اطول(2a) می‌باشد.

 

+ نوشته شده در  چهارشنبه بیست و هشتم دی 1390ساعت 21:39  توسط احمد محمدی  |